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Resumo

O momento magnético anomalo do mton, g, — 2, ¢ um observavel fundamental da fisica
de particulas. A previsao da equacao de Dirac, g, = 2, recebe pequenas corre¢oes quanticas —
advindas da troca de particulas virtuais — no contexto do Modelo Padrao. Com a medida experi-
mental recente de g, —2 do muon feita pela colaboragao Muon g—2, no Fermilab, este observével
mostra agora uma tensao de 4.20 em relacao as previsoes do Modelo Padrao. Entender a origem
desta discrepancia é um importante problema da fisica atual, que requer a revisao e anélise
detalhada da incerteza tedrica dos calculos envolvendo as corregoes no valor de g, —2. O presente
trabalho dedica-se a estudar e reproduzir os resultados classicos para g, —2 da Equagao de Dirac e

da primeira corre¢ao obtida na eletrodinamica quéntica, calculada por Julian Schwinger em 1948.

Palavras-chave: Teoria quantica de campos. Eletrodinamica quantica. g, — 2.
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1 Introducao

O momento magnético do miion desempenha, historicamente, um papel importantissimo no
estabelecimento da Eletrodindmica Quantica (QED) — e do Modelo Padrao (SM) como um
todo — como uma teoria sélida e capaz de fazer previsoes refinadas na fisica de particulas. A
descrigao classica para o momento magnético, p, de uma particula elementar de carga e e spin

S, é dada por (em unidades naturais, h =1 e c=1)
—S5 1
" s, 1)

onde g é o fator giromagnético da particula e m a sua massa. Paul Dirac previu,’ em 1928,
com o desenvolvimento da Mecanica Quantica Relativistica (MQR), g = 2 para o elétron (e
consequentemente para todas as particulas elementares de spin 1/2), que certificava os resultados
experimentais da época e representava um grande salto comparado ao formalismo anterior da
Mecanica Quantica Nao Relativistica.

Com o advento da Teoria Quantica de Campos (TQC), o fator g passa a apresentar corregoes
finas, provenientes das trocas de particulas virtuais previstas no escopo da QED. Para os léptons
carregados (¢ = e, u e 7), defini-se 0 momento magnético anémalo, que nada mais é do que o

desvio relativo de g em relacao a sua previsao da MQR,

ge — 2

=5 (2)
A primeira corregao a g, — 2 (entdo calculada para o elétron), advinda da QED, foi calculada
por Julian Schwinger em 1948.? No mesmo ano, P. Kusch e H. M. Foley confirmaram experimen-
talmente o resultado de Schwinger,® mostrando a incrivel capacidade da QED em calcular com
grande precisao importantes observéaveis da fisica. Desde entao, g, — 2 mostra-se uma ferramenta

poderosa na busca por novas interagoes e fisica além do SM.
Recentemente, a colaboracao Muon g — 2 efetuou uma série de medidas para a,, o momento
magnético andémalo do mion, no Fermilab (FNAL), laboratoério de fisica de altas energias no

USA, indicando um desvio
Aa, = al — o™ = (251 £59) x 107", (3)

que representa uma tensao 4.20 em relacao a previsao do SM,* como indica a Figura 1. Entender
a origem desta discrepancia é um importante problema da fisica atual, que requer a revisao e
andlise detalhada da incerteza tedrica dos calculos envolvendo as corregoes no valor de g, — 2.
No mais, em nao havendo problemas nos célculos do SM, o resultado passaria a apresentar forte

indicio de uma nova fisica, possivelmente ligada a efeitos de particulas mais massivas nunca
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Figura 1 — Tensao entre o resultado experimental do Muon g — 2 e a previsao do SM para g — 2.
Fonte: ABI et al.*

observadas, tais como alguns candidatos & matéria escura, por exemplo.

Motivados por esse intrigante resultado experimental e sua importancia para a fisica de
particulas atualmente, o presente trabalho dedica-se a revisitar e reproduzir os resultados
classicos de g, = 2 proveniente da Equagao de Dirac e da primeira corre¢ao advinda da QED

para g, — 2.



2 g, = 2 via Mecanica Quantica Relativistica

Dentro do escopo da Mecéanica Quantica Relativistica, o tratamento de particulas fermioénicas

de spin 1/2 é feito através da Equagao de Dirac, que na forma livre (V(x) = 0) é dada por

(178 — m)ip(x) = 0, (4)

em que ¥ ¢é o espinor de quatro componentes e ¥* sao as matrizes de Dirac (4 x 4), cujas

expressoes sao dadas, na chamada base quiral, em blocos 2 x 2, por

o (1 0 . (0 o
! _<0 —I)’ 7_<—ai o)’ ®)

em que I é a matriz identidade e o* sdo as matrizes de Pauli usuais.

O interesse nesta se¢ao é estudar a interagao de uma particula carregada de carga e com o
campo eletromagnético classico (ndo quantizado). A introdugao dessa interagao na Equagao de
Dirac é feita da seguinte maneira: adotando a assinatura da métrica g, = diag(1,—1,—-1,—1) e

o sistema natural de unidades (h =1 e ¢ =1) !, o quadripotencial eletromagnético é dado por
Al = (¢, A), (6)

de forma que efetuando a substituigao de acoplamento minimo, d,, — (9, + ieA,),” insere-se na

Eq. (4) a dependéncia com o campo eletromagnético. Encontramos entao
V(i — eA,) —m] ¥ =0, (7)

que ¢é a equacao que descreve a interacao desejada, relativisticamente.

Para resolver a Eq. (7) , é conveniente adotar o ansatz

_ q;+ —iEt
o (1) o

no qual W4 representam os espinores de Pauli, de duas componentes, uma forma conveniente
para fazer contato com a versao nao relativistica da MQ, e E a energia de repouso da particula
em questao. Com isso, aplicando (8) na eq. de Dirac, encontra-se o cojunto de duas equagoes
acopladas da forma

(E—m—ep)V, +0o-(iV+eA)V_ =0, 9)

(E+m—ep)V_+o0-(1V+eA)V, =0, (10)

1 Utilizaremos essa convencao de métrica e sistema de unidades durante todo o trabalho.



e desejamos resolvé-las para os espinores W, e W_.

Antes de partir para a solugao, é possivel analisar os termos encontrados sob uma 6tica
nao-relativistica. No limite de baixas velocidades, a energia de repouso da particula ¢ muito
maior que sua energia cinética (p*/2m < m) e a contribuigao coulombiana advinda do potencial
escalar, e¢, também é desprezivel quando comparada com a componente de repouso. Isso traz

implicagoes interessantes, de forma que simplifica-se o termo entre parénteses Eq. (10) como
E+m—ep=2m, (11)
que leva a facilmente resolver o conjunto acoplado de equagoes isolando

1 :
U_ = 5. 7" (iV +eA)V,, (12)

o que possibilita substituir ¥_ na Eq. (9), encontrando

(E—m)¥, — (%[a’ - (iV +eA))? + e¢> U, =0. (13)

Ainda é possivel trabalhar um pouco a Eq. (13) utilizando algumas propriedades das operagoes

com as matrizes de Pauli. Dado um operador #, a identidade®
(- #7)=7"+io. (7 x7) (14)

permite reescrever o primeiro termo dos parénteses na Eq. (13), e sendo o campo magnético
B = V X A e o operador momento da mecanica quantica p = —iV, a Eq. (13) pode ser reescrita

convenientemente como

<L (p—eA)’ +ep — % (o B)) Uy =(E—-m)Vy,, (15)

2m

que pode ser resolvida para W, e encontram-se as solucoes para a equagao de Dirac na
aproximacao correspondente. Entretanto, é possivel extrair interpretacoes interessantes no limite
que estamos estudando: a expressao encontrada na Eq. (15) nada mais é do que a Hamiltoniana
de Pauli independente do tempo, ja conhecida da mecanica quantica nao relativistica, em que
as duas componentes de ¥, sao as solugoes para os dois graus de liberdade de spin da particula
fermionica.’

Analisando com maiores detalhes, a equagao de Pauli descreve um hamiltoniano classico do
campo eletromagnético atuando em uma particula de carga e, mais um termo que representa um

hamiltoniano de interacao do campo magnético B com uma quantidade vetorial proporcional a

10



o. Ora, sabendo que no formalismo dos férmions escreve-se o spin das particulas como
S =-o, (16)
entao a hamiltoniana da interagao com o campo magnético pode ser descrita através de
e
Hy,,=—— (S -B)=—(p-B), =-S5, 17
1=-— (5 B)=~(n B), p=_ (17)

em que p ¢ o momento de dipolo magnético da particula estudada.
Por simples comparagao entre o resultado esperado cléassico na Eq. (1) e o calculado através
do formalismo da MQR na Eq. (17), no limite de baixas velocidades, encontra-se o fator g para

o muion (o mesmo para os demais léptons carregados) como

9gu = 2 s (18)

que é o famoso resultado obtido por Paul Dirac,' e que historicamente demonstrou o poder da
MQR perante aos formalismos anteriores, visto que além de explicar o surgimento do spin e
também a existéncia de anti-particulas na fisica, demonstrou o valor esperado para g, o qual
ja se sabia, de maneira semi-empirica, ser aproximadamente igual a dois na época que Dirac

publicou seu trabalho.

11



3 A Eletrodinamica Quantica (QED)

Como comentado, as corregoes finas no valor de g, advém das interagoes calculadas dentro
do escopo da Teoria Quéantica de Campos. Esta por sua vez, diferentemente dos formalismos na
Mecanica Quéantica, tem a dinamica construida através de lagrangianas descritas em termos
de campos quantizados (e suas derivadas), e nao através de potenciais de interagao obtidos
externamente a teoria. Neste trabalho, em particular, estamos interessados nas corregoes advindas
da Eletrodinamica Quéantica, formalismo da TQC que trata das interagoes entre fétons, excitagoes
quanticas do campo eletromagnético, e as particulas fermionicas de spin 1/2. Para isso, precisamos
construir a lagrangiana que rege esse formalismo, para que entao sejamos capazes de calcular os
processos que envolvem g, — 2 dentro desse escopo.

A lagrangiana que descreve o campo livre das particulas de spin 1/2 é
o = (a0 (x) — mi () (), (19)

onde ¢ e 1; = 'Y representam campo e o campo adjunto de Dirac, respectivamente, que serdo
quantizados. No contexto da TQC, ¥ nao é mais uma fun¢ao de onda, e sim um operador capaz

de criar e destruir estados de particulas. Através da Equagao de Euler-Lagrange

encontramos a equacao de movimento para os férmions

(i) — m) = 0, (21)

em que usamos a notacdo de Feynman, ¢ = Y9,, e que é justamente a Equacao de Dirac
da MQR. Nota-se, portanto, que a lagrangiana da Eq. (19) recupera a expressao dindmica
para as particulas fermionicas de spin 1/2. Porém, precisamos inserir na lagrangiana um termo
que envolva a interagao dos férmions com o campo eletromagnético, agora necessariamente
quantizado no escopo dessa teoria. Para isso, o mecanismo consagrado na literatura para a
construcao da interagdo na QED é a invariancia de gauge (ou calibre) local, que passamos a
discutir a seguir.

A lagrangiana da Eq. (19) possui invariancia por transformagcao de fase U(1) global, isto é, a
substituicao

Y(z) = ¥ (2) = (x) (22)

nao altera a Equacao de Dirac, com 6 uma fase real e constante. Porém, isso deixa de ser

verdade quando 6 torna-se uma funcao das coordenadas do espago-tempo, isto quer dizer que

12



a lagrangiana da Eq. (19) ndo é invariante por transformagao U(1) local, ja que a derivada

modifica-se para

() = (0u0) () = [0 + ied,f(x)] (). (23)

A ideia para se construir o termo de interagao na lagrangiana é promover a invariancia global
para local, efetuando as mudangas necessérias na derivada da Eq. (19) para que isso se torne
verdade. O termo extra que surge na derivada da Eq. (23) pode ser corrigido adicionando um

campo de gauge de spin 1, A,(z), que se transforma como’

A,(2) = (4,)/(x) = Au(2) - 9,0(x), (24)
e definindo uma derivada covariante, com respeito a tranformagcao de U(1) local,

D, )(x) = (0, + ieA,)Y(x), (25)

a qual se transforma apenas com uma fase, assim como ¥ na Eq. (22) . Com isso, podemos

reescrever a lagrangiana da Eq.(19) como
&L =ip(x)y" Db () — mip(2)i(z) = L — ed(@)y" Au(z)(2), (26)
que agora possui simetria U(1) local e inclui um termo de interagao
L = —ep(x)y" Au(2)¥(2), (27)

que sugere a interpretagao do campo de gauge quantizado A, como o campo do féton: uma
particula de spin 1 e sem massa que interage com os férmions. Para que isso seja possivel, A,
deve ser um campo dinamico, o que exige adicionar a lagrangiana um termo cinético para esse
campo’
1
17
Zoin = = Fuu (@) P (2), (28)
em que F,, = 0,A, —9,A, ¢ o tensor eletromagnético.

Assim, encontramos a lagrangiana da QED, invariante por trans. de gauge locais, como

1
ZqEp = 1

Fu () F* () + i) (2)7"0utp () — mip(2)ih(2) — ey ()7 Au(z)v(z) | (29)

que rege as interagoes de férmions e fétons na TQC e permite determinar as contribuicoes finas
em g, — 2 proveniente da Eletrodinamica Quantica. Porém, fazer esses célculos diretamente da
lagrangiana nao é tao simples: dentro da Representacao de Interagao (também conhecida como
Representacao de Dirac), defini-se o operador de evolugao temporal dos estados quanticos como

uma funcao da lagrangiana de interacao da teoria, o que permite escrever um estado no tempo

13



através de uma solucao iterativa, conhecida como Série de Dyson. Com os campos escritos
em termos dos operadores de criagao e destruicao, e definidos os estados inicial e final de um
processo na QED, calcula-se a amplitude do evento através de um trabalho arduo envolvendo
contragoes dos operadores na Série de Dyson com os estados das particulas, o que estende
consideravelmente os calculos das amplitudes na QED.’

Felizmente, h4 um mecanismo brilhante, desenvolvido pelo também brilhante fisico Richard
Feynman, que consiste em calcular os processos da QED via Diagramas e Regras de Feynman:
desenhos esquematicos que representam as interagoes, e que podem ser associados a um conjunto
de regras que ligam os elementos dos diagramas a termos da equagao que descreve a amplitude
do processo. Comegamos associando, para cada linha interna e externa do desenho, um qua-
drimomento com sentido definido para o fluxo das particulas, de forma que em cada vértice
do diagrama, possamos impor a conservacao de momento. Feito isso, as regras de Feynman na

QED sdo obtidas diretamente da lagrangiana da Eq. (29), e podem ser resumidas como’

1. Para as linhas externas, incluir

_ inicial :  u(p) ' . inicial :  o(p) inicial : €,(p)
férmion , antiférmion , fotons ,
final - u(p’) final . w(p') final : € (p')

em que u e v representam os espinores de Dirac para particulas e antiparticulas, respec-
tivamente, e ¢, a polarizagao do féton, que é a contracao do campo A, com os estados

externos, com seus momentos p e p’ entrando e saindo do diagrama, respectivamente;
2. Para cada vértice, adicionar (—iey*), conhecido como Vértice Fundamental da QED.

3. Para linhas internas de quadrimomento p, que representam os propagadores da teoria,
incluir ( )
+m v

férmion : zp— foton : —i Iu

—_ 30
p2 —m? + i€’ p? + i€’ (30)

onde € — 0 é a Prescricao de Feynman para tratar as singularidades no denominador;
4. Integrar sobre cada momento de loop interno do diagrama;

5. O resultado sera 1., onde .# é a amplitude do processo descrito pelo diagrama.

Vale ressaltar que é importante seguir a ordem acima para evitar resultados errados para
a amplitude do processo. Uma forma segura de se ler um diagrama de Feynman é seguir as
linhas que representam os férmions e percorré-la no sentido contrario ao fluxo da particula,
representado pela direcao da seta.” Definidas as regras de Feynman, estamos aptos a calcular os
processos da QED que contribuem em g, — 2. Porém, antes, precisamos verificar quais diagramas
contribuem ao momento anémalo do muon, e como extrair as correcaos de suas respectivas

amplitudes.

14



4 Corregao de ordem « para g, — 2 na QED

4.1 Correcoes Radiativas na QED: Fétons Virtuais

K
) —_ _|_ _|_ _|_ * o0
p D
(@ (b) (c)

Figura 2 — Interacoes do p, indicado pelas linhas cheias de momento p e p’, com o campo eletromagnético,
indicado pelas linhas onduladas (fétons). O circulo branco representa todas as possiveis interagoes.
Fonte: Elaborada pelo autor.

Vamos considerar os diagramas da Figura 2, que representam a interacao do muion com
um campo eletromagnético externo, em ordem mais baixa (a) e dois exemplos de interagoes
geradas por diagramas de loops. Os diagramas em (b) e (c) sdo exemplos das chamadas corregoes
radiativas na QED, e sdo provenientes da troca de fétons virtuais pela particula carregada.
Em outras palavras, o fenémeno pode ser interpretado como a auto-interacao do miion com o
proprio campo gerado por sua carga, que emite e reabsorve os fétons, o que pode contribuir
significativamente para uma variedade de observaveis, em especifico o momento magnético
an6malo, como demonstraremos a seguir.

Uma forma interessante de estudar o processo descrito na Figura 2 é considerando, inici-
almente, a interagao dos férmions com os foétons externos fora da camada de massa, isto €,
tomando o quadrimomento do féton incidente nao necessariamente como ¢ = 0. A grande
vantagem disso é tratar o problema da forma mais geral possivel, o que nao nos impede de
utilizar as regras de Feynman associadas a QED normalmente. Com todo o processo da Figura
2 descrito de forma generalizada, voltaremos a tomar as condi¢oes da camada de massa para as
interacoes que desejamos observar.

Dito isso, a amplitude dos processos descritos na Figura 2 ¢ dada por .#*¢,, onde €, ¢ o
vetor de polarizagao associado ao féton externo do vértice, e .Z" é um termo que pode ser

escrito convenientemente como®

iM" = —ieu(p" )T (p', p)u(p), (31)

em que u(p') e u(p) sdo os espinores associados aos muons espalhados, e I'*(p,p’) é uma
estrutura geral que parametriza toda a informacao das auto-interagoes ligadas a Figura 2.

Podemos restringir o formato de IT'*(p,p’) utilizando argumentos de simetria da QED e a

15



invariancia de Lorentz.

Para comecar, ['* deve ser uma combinacao linear dos quadrivetores disponiveis, que sao v*,
pH, p'* e ¢, além de constantes fundamentais como m e e, podendo ser escrito em sua forma
geral como

=~ A+p" B+p" C+q" D, (32)

com A, B, C' e D fungoes escalares de Lorentz que podem envolver produtos das matrizes de

Dirac e vetores, como p = +"p,. Entretanto, pela equagao de Dirac

(33)

e podemos escrever as varidveis p e j apenas em termos da massa m. Além disso, com a
conservacao do momento, g* = p'* — p*, podemos tomar D = 0, fazendo com que o tnico escalar
possivel e nao trivial (além das constantes m e e) que pode compor os coeficientes da Eq. (32)
seja ¢® = (p' —p)? = =2p" - p +2m*.

Outra simplificacdo que podemos fazer ¢ através da Identidade de Ward”

qut" =0, (34)

a qual afirma que o termo da amplitude .#Z* é zero quando contraido com o quadrimomento do

foton externo ¢,. Logo, multiplicando toda a Eq. (32) por g,
@™ = g A+ qup" B + qup"C = 0, (35)

e, utilizando a Equacao de Dirac, tem-se g,v* = 0, portanto, os termos que acompanham B e C

sao os unicos nao diretamente nulos. Usando
g-p=p -p—m*=—q-p, (36)

tem-se B = (', reduzindo o formato de I'* a apenas duas funcoes escalares de Lorentz.

Usando a Identidade de Gordon, podemos substituir (p+ p’) na expressao de I'* em favor de’

1) | P ut) = a0 |7+ G ), o = S 7

tornando todo o termo I'* fungao apenas de v e ¢*. Portanto, a Eq. (32) pode ser escrita, de

maneira totalmente geral, como

10" q,
2m

T(p',p) = Y Fi(q°) + B(q), (38)

16



onde F}(q*) e Fy(¢?) sdo chamados de Fatores de Forma, expressoes escalares que acompanham
as estruturas de Lorentz v* e i0#”q,, respectivamente, e carregam, portanto, todas as informagoes
do termo da amplitude descrito pela Eq. (31).

Vamos verificar agora como os Fatores de Forma se conectam com o momento magnético
andémalo do muion. Como observado na Hamiltoniana de Pauli, Eq. (15), a aproximagdo nao
relativistica para a solucao da Equacao de Dirac leva, naturalmente, ao surgimento do fator g em
um termo acoplado ao spin da particula, S = /2. No contexto da Teoria Quéntica de Campos,
os resultados para a amplitude do processo que estamos calculando estao dentro do escopo
relativistico, portanto, para extrairmos as corre¢oes em ¢, procuramos termos necessariamente
acoplados a 0"”q,, o que nos permite identificar onde ha a dependéncia com o spin da particula.

Em ordem mais baixa, o fenémeno descrito é apenas um espalhamento de Rutherford usual,
dado pela interacao do muion com o campo externo. Sendo nesse caso I'* = y*, entao os fatores
de forma em ordem mais baixa assumem os valores F} = 1 e F, = 0, obrigatoriamente. Assim,

usando a Identidade de Gordon mais uma vez, escrevemos .Z*" em ordem 0 como

(&

g == (P 0l )uto) — il ) (39

2m

que deve reproduzir g, = 2 proveniente da Eq. de Dirac. Ora, pelo argumento anterior que nos
permite identificar g,, acoplado ao termo de spin, o fator giromagnético pode ser interpretado
como 4m /e vezes o coeficiente que acompanha ic#”q,,, indicando que Fi(g?) ¢ o fator responsavel
por recuperar o resultado esperado da MQR.®

Entretanto, note que o Fy(¢?) é capaz de modificar o vértice fundamental da teoria, o qual
provém do acoplamento do féton na QED, eAuzﬁ’y“w, que é fixo nesse contexto e nao deve ser
alterado pelos fatores de forma, em nunhuma ordem de interagao. De fato, F}(¢*) desempenha o
papel de um fator escalar que multiplica e no acoplamento, sendo relevante apenas no processo
de renormalizacdo da carga.® Com isso, o fator de forma Fj(¢?) é fixado a unidade em todas as
ordens de interagao da Figura 2, e ndo deve contribuir as corregoes de g, — 2.7

Atraveés dessa observagao, e pela estrutura geral de Lorentz na Eq. (38), o fator de forma
F5(q?) é o verdadeiro responsavel pelas corregoes de g, em ordens superiores ao espalhamento de
Rutherford. Tratando-se de um observavel em que os fétons externos interagem com os férmions

na camada de massa (¢? = 0), o fator giromagnético para o muion passa a ser expresso como

‘gu = 2[F1(0) + F>(0)] = 2+ 2F5(0) |, (40)

reduzindo nossa anélise a calcular apenas F5(0), que é diferente de zero para os diagramas de
loop na Figura 2.
Assim, nosso trabalho agora ¢ dedicado a encontrar a primeira correcao a g, — 2, em ordem

a (a constante de estrutura fina), através da amplitude dos diagramas na Figura 2, que pode
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Figura 3 — Diagrama de Feynman de vértice do mtion. A seta semi-circular indica o fluxo de momento
k dentro do loop.
Fonte: Elaborada pelo autor.

ser expressa por
['* =~# 4+ 6TH, (41)

onde y* ¢é o espalhamento de Rutherford (ordem a’) do diagrama (a), e 6T'* é a contribuicao

proveniente da andlise do vértice em (b) da Figura 2, o qual iremos calcular a seguir.

4.2 Calculo da Correcao de um Loop do Vértice do Muon

Aplicando as Regras de Feynman no diagrama da Figura 3, o fator 6I'* é dado por

d*k g (¥ +m) (F +m)
Fu / — 2 vp —( I\ V i P ) 49
o (', p) e / (2m)4 (k —p)? + Z,€u(p g K2 —m?+ic! K?—m2+ie! u(p) (42)

As integrais desse tipo sao conhecidas como integrais de loop, e aparecem quando ha nos

diagramas uma estrutura em formato de laco (quando h& 3 ou mais vértices de interagao),
percorridas por um momento interno, k, da troca de particulas virtuais. Para resolver essa integral,
primeiramente, podemos simplificar a expressao para o denominador através da Parametrizacao

de Feynman. Esse método consiste em reescrever os trés fatores da Eq. (42) como

1

1
2
(k= PP+ i) (K? —m® 4 i) (k2 — m? + ic) :/0 dody dzo(z+y+z—1)75  (43)

D%’

em que x,¥y, z sao os Pardmetros de Feynman, os quais simplificam a expressao tornando o
denominador
D=k +2k - (yq — 2p) + yq* + 2p* — (z + y)m® + ie, (44)

em que usamos = +y + z = 1 e k' = k + ¢ para reescrevé-lo.
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Agora, fazemos a mudanca de variavel £k — [, completanto o quadrado em D para
l=k+4+yg—2p = D=101—A+ie (45)

no qual
A=—zyg® + (1 —2)°m? (46)

¢ uma funcao em termos da massa do mion, m. Note que a parametrizacao da integral em
termos de x, y e z, permitiu reescrever o denominador eliminando termos lineares na nova
variavel de integragao, o que facilita o prosseguimento do calculo.

O numerador na Eq. (42), em termos agora de [,

N =a(p" [y (I + (1= y)g + zp)v" (I — yd + 2p)n]u(p) (47)

apresenta termos lineares e quadraticos na nova variavel. Pela contagem do nimero de poténcias
do denominador, no maximo /3, ha uma divergéncia no ultravioleta (momentos altos em [) na
integral que estamos trabalhando.”

Ha diversas formas de interpretar as divergéncias presentes em algumas integrais de loop.
Uma delas consiste em associar o problema as dimensoes do espago de integracao: se efetuéssemos
os calculos em um espago de dimensao d < 4, a integral seria finita e apresentaria a convergéncia
desejada.” Estamos interessados nos resultados para um observavel da fisica, g, — 2, portanto,
divergéncias nao devem aparecer em nossos resultados.

Utilizar um mecanismo que permita tratar esse problema se torna crucial, e desde ja
adotaremos uma prescri¢ao para isolar a divergéncia na integral da Eq. (42), conhecida como
Regularizagao Dimensional (Reg. Dim.). Essa prescrigao, proposta inicialmente por G. 't Hooft
e M. Veltman em 1972, consiste em calcular o diagrama da Figura (3) em um espago d

dimensional, com 1 dimensao temporal e (d — 1) espaciais, de forma que
d=4— 2, (48)

onde no limite que queremos, d — 4, tem-se ¢ — 0, nos permitindo isolar a divergéncia,
convenientemente, em termos que envolvem polos em e.

Para usarmos Reg. Dim., é necessario tratar a algebra de Dirac para as matrizes v* em
um novo espaco de d dimensoes, o que claramente modifica as identidades usuais e seus tracos.
Através da contragao

Yy =d-1, (49)
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as novas identidades para a algebra de Dirac em d dimensoes sao

Vi = =24 + (4 — d)d,
v by, = 4(ab) — (4 — d)gp, (50)
Vihbdy, = —2¢bd + (4 — d)db¢,

que permitem calcular as contragoes na Eq. (47). Porém, algumas identidades podem simplificar

ainda mais o numerador da nossa integral. Primeiramente, podemos utilizar’

[t

que vem diretamente da paridade impar no numerador [ — —I[, enquanto os demais termos sao

pares em relagao a [, levando a zero integral e permitindo descartar os termos lineares em [*.

Uma segunda expressao que auxilia a simplificagao é

dt 1 di g
/ ~ [t (52)
(2m)d D3 (2m)d D3

que decorre dos mesmos argumentos de simetria: se y # v, a integral é zero. Porém, no caso em

que 4 = v, podemos substituir o produto em termos da métrica g**.” Todas essas identidades

aplicadas na Eq. (47) levam a

N =a()[(2 = d)]y" = 2m*y* + 4m((1 — 2y)g" + 22p")

—2(=yd + zp)v" (1 —y)¢ + 2p) + (4 = ) K (D]u(p),

(53)

no qual K (1) representa um conjunto de fatores proporcionais a (4 — d), que serdo anulados
quando tomado o limite d — 4, e, portanto, iremos desprezé-lo daqui em diante. Nesse passo da

simplificacdo, é interessante utilizar os resultados da equacao de Dirac’

pu(p) = mu(p),  u(p)y =ma(p’),  a(p)gulp) =0, (54)

que nos permitem substituir os momentos p e ¢ em termos da massa m. Além disso, é importante
que possamos obter do numerador os fatores de forma Fi(¢?) e Fy(¢?) introduzidos na se¢ao
anterior, e para isso aplicamos as identidades de Ward (34) e de Gordon (37), a fim de obter uma

expressao em funcao de v e i0"”q,. Através de todas as simplificacoes mencionadas, obtemos a
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Figura 4 — Contorno de integracdo em [°, que permite a Rotacio de Wick.
Fonte: Elaborada pelo autor.

integral em (42) como sendo

! di 2
STH (' p) :M(4d)/222’62/0 de dy dz 6(z+y+2z—1) / @n)i D° u(p') [,Yﬂx

( - ;d2)212 + 0 g & (1—=z)(1—y)¢*+ @(1 —2m - 2m22> )

ot q,

2m

(2m?=(1 — z>>] u(p)

(4=d)/2, que sera necessario

onde adicionamos a expressao um parametro escalar de energia p
para manter algumas expressoes matematicas adimensionais em nossos resultados, como sera
enfatizado em breve.!'

O proximo passo é efetuar a integracao em d?l na métrica de Minkowski para o espaco-
tempo plano em d dimensoes. Entretanto, ¢ muito mais simples realizar essa integracao em um
espago com meétrica euclideana, o que possibilita a utilizacao das coordenadas hiperesféricas d
dimensionais usuais. Felizmente, isso é possivel através de um truque conhecido como Rotacao
de Wick. Pela localizagao dos polos da equagao (55), a integragao pelo contorno apresentado na

Figura (4) é zero, via Teorema dos Residuos

7{ di’f(I°) = - F(I0dI® + / o fIOar’ + [ fIa®+ [ f(1%)dl® =0, (56)

00 +i00 C1 Ca

e as integrais nos quartos de circulos O e Cp também vao a zero quando tomado [° — 0.
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Portanto, de (56) retiramos que

o f(I0)dl® = /_ " F(1%al°, (57)

—00 100

mostrando que as integrais no eixo real e complexo sao equivalentes. Entao, tomando o lado

direito da Eq. (57) e fazendo a mudanga de variavel
d’ =i dl%, dl=dlg, (58)
tornamos a métrica euclideana
ds® = (dI°)® — dI > = —ds* = (dI%)? + dip 2, (59)

facilitando a escolha de um sistema de coordenadas e simplificando o processo de integracao.®

A expressao (55), agora em [, passa a ser

1 d
2
o (p',p) = M(4_d)/2262/ dr dy dz §(z +y+2z—1) / il

(d—2)?,  (6—d)
(=

2
g,

u(p’) [7“ X

I3+ (1—-2)1—-y)¢@+ (d=2) (1—2)*m? — 2m2z) (60)

2

m

(1= 2)] o)
onde o denominador também sofre modificacoes para
Dp =I5 + A +ie. (61)

Em seguida, precisamos efetuar a integracao do momento lg. Sao duas integrais que temos

que resolver, sendo a primeira

d4l 12 4 o0 i1
— ,4=d)/2 E E _ d =
b= / (2m) (I3 + A)? / (27)1 / R PN (62)

na qual a primeira integral ao lado direito ¢ feita sobre o dngulo s6lido em d dimensoes. Esse

resultado pode ser obtido através do truque’

(V) = / dz exp (—Ed::ﬁ) = / dQy /0 " i zdte™", (63)

que, usando a definicao de funcao Gama, implica na area de uma esfera de raio unitario
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d-dimensional como sendo

27rd/2
/de = W (64)

Ja o segundo termo na Eq. (62) pode ser resolvido através da substitui¢ao

[e'¢) 00 d _
/ dl Z%—H:l/ d(ﬂ)M:l i :
o TR+ AP 2, VE R AR 2\A

na qual z = A/(I% + A) e usando a defini¢ao da fun¢ao Beta'

[SI[oH

1
/ dr (1 —z)Y? 21742 (65)
0

' [(a)1(5)
de 2 '(1-2)"' =B =
| et — 0 = B = G (66)
encontramos o resultado em d dimensoes para a integral (62)
d 2 _d 2-4
I = u(4‘d)/2/ e b _ a1 dre-5) (Ly* (67)
(2m)d (1%, + A)3 (4m)di2 2 T'(3) A

Note que a expressao (67) possui um polo simples na fungao I'(2 — d/2) em d = 4. Nosso
resultado, portanto, apresenta uma divergéncia exatamente no limite que desejamos, como era
esperado pelos comentarios feitos anteriormente que ligam a divergéncia & dimensao do espago
de integracao. A grande contribui¢ao do método da Reg.Dim. consiste em permitir a substituicao

d = 4 — 2¢, de forma que reescrevemos a Eq. (67) como

oy B (2-9 T (1)
n=p | @i (B + AP " 4mre ) (A) ’ (68)

e no limite d — 4 desejado, possibilita a expansao do resultado em torno de ¢ = 0. Usando a

aproximacgao, em primeira ordem para a fungao I'(z)
1
[(e)=--v+0(), (69)

onde v = 0.577215665 ¢é a constante de Euler-Mascheroni, obtemos o resultado para Eq. (62)

CcOomo
Ay B 1

heat [ eay v oy (e () +00),

em que isolamos toda a divergéncia da integral em um termo 1/¢ quando tomado € — 0. Note a

importancia da escala de energia 1 que adicionamos a integral anteriormente: ela é responsavel
por manter o argumento do logaritmo adimensional, ja que A tem dimensao de energia (massa).

A segunda integral que precisamos determinar na Eq. (60) pode ser calculada usando os
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mesmos procedimentos’

iy 1 11
] — ' J— 1
2 /(27r)d (2 + A3 dasd 3202 A (71)

que, felizmente, nao tem divergéncias.
Com esses resultados para a integracao em d%ly de I e I, com d — 4, obtemos a expressao

para corre¢ao de um loop do vértice do mion como

2m

1 2
T (P, p) = %/0 dr dy dz6(x +y+ 2 —1) x u(p) [w v (%277@22(1 - z)>
(72)

N (1 +log (42“ ‘”) + % (1—2)(1—y)’ + (1 -4z + ZQ)WQ))}U(P%

escrita agora em termos da constante de estrutura fina a = e2/41 ~ 1/137.036 ~ 0.007297."
Da expressao na Eq. (72), podemos identificar os fatores de forma de acordo com a Eq. (38)

como

! 1 4
Fi(¢®) = 20; / de dy dzé(x +y+2—1) {E + log (%e‘”)

; (73
# 5 (=0 =)+ (1= a4 ),
o o [ 2m?z(1 — 2)
F2(q)—%/0 d dy ded(o +y+ 2= ) oo (74)

e notamos que a divergéncia se encontra apenas no fator F;(¢*), o qual por construgao deveria
ter valor fixado 1. Mas isso nao é um problema: o procedimento de renormaliza¢ao, que esta
fora do escopo deste trabalho, elimina esta divergéncia.” De qualquer modo, o resultado que nos
interessa depende apenas de Fy(q¢?), que ¢ finito.

Podemos entao calcular, agora tomando ¢? = 0,

1
« 2z «
(=0 dx dy dz6 -1 = — 75
2(¢” =0) = 27T/ v dy dz0(z +y+ 2 )(1_Z) 5 (75)
concluindo que a primeira corre¢ao na QED, em ordem «, para o momento magnético anomalo
do muon é
Gy —2 o'
=2 = — ~0.00116140973 76
W=y Ton ’ (76)

o famoso resultado de Julian Schwinger para correcao de ordem a em g, — 2, no contexto da
QED,? que foi comprovado experimentalmente por Kusch e Foley em 1948, encontrando, na
ocasiao para o elétron, a, = (0.00119 4 0.00005),® validando o resultado da Eq. (76), dentro da

incerteza do experimento. Esse resultado a época, demonstrou a capacidade da Teoria Quéantica
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de Campos, e em particular a Eletrodinamica Quantica, ainda em seus primeiros anos, em
efetuar calculos com grande precisao para importantes observaveis da fisica. Além disso, mostra
que apesar de existirem divergéncias na teoria, ela é capaz de produzir resultados finitos para

tais observaveis e que estao de acordo com as observacoes experimentais.
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5 Conclusao

O objetivo desse trabalho foi obter o resultado cléssico para g, = 2, proveniente da equagcao
de Dirac, e a primeira corre¢ao em g, — 2 dentro do escopo da TQC, mais especificamente na
QED, da troca de fétons virtuais.

Primeiramente, tomando o limite nao relativistico (onde a energia de repouso é muito maior
que a energia cinética da particula), resolvemos a equagao de Dirac, com a substituigao de
acoplamento minimo. Com isso, vemos que a equagao para os bi-espinores, associados ao ansatz
da Eq. (8), nada mais é do que a Hamiltoniana de Pauli, que descreve a intera¢ao de uma
particula carregada com o campo eletromagnético na Mecanica Quantica Nao Relativistica.
Assim, compara-se, naturalmente, o resultado obtido com o esperado classico, encontrando
g, = 2 como uma previsao direta do tratamento do problema na MQR.

Em seguida, dentro do formalismo da QED, mostramos que os diagramas de loop produzem as
corregoes provenientes da Eletrodinamica Quantica para g, — 2, através do célculo dos chamados
Fatores de Forma. Mostramos também que a corre¢ao para o momento magnético anémalo do
muon provém apenas do fator de forma F»(0), quando estudada a intera¢ao dos mtions com o
foton externo na camada de massa, ¢> = 0. Através das Regras de Feynman da QED, calculamos
as amplitudes dos processos para os diagramas de vértices do muion. Utilizamos procedimentos
consagrados da TQC para resolver a integral de loop, como a Parametrizacao de Feynman e
a Rotacao de Wick. Para tratar a divergéncia associada a integral do processo estudado, foi
adotado o método da Regularizagao Dimensional, que consiste em interpretar a divergéncia
associada as dimensoes do espaco de integracao. O procedimento isolou a divergéncia em um
polo simples em € = 0, que felizmente nao esta presente no fator de forma Fy(g?). Calculamos
entdao a, = F»(¢*> = 0) = a/2m, a corre¢ao de um loop na QED para o momento magnético
andémalo do muon.

No geral, o presente trabalho mostrou o poder da Mecanica Quéantica Relativistica e da Teoria
Quéantica de Campos, em particular a QED, em obter resultados fantasticos para observaveis
importantes da fisica, que, inclusive atualmente, desempenham um papel crucial na validacao

do Modelo Padrao da fisica de particulas e na busca por fisica além do SM.
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