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Resumo
O momento magnético anômalo do múon, gµ − 2, é um observável fundamental da física

de partículas. A previsão da equação de Dirac, gµ = 2, recebe pequenas correções quânticas —
advindas da troca de partículas virtuais — no contexto do Modelo Padrão. Com a medida experi-
mental recente de gµ−2 do múon feita pela colaboração Muon g−2, no Fermilab, este observável
mostra agora uma tensão de 4.2σ em relação às previsões do Modelo Padrão. Entender a origem
desta discrepância é um importante problema da física atual, que requer a revisão e análise
detalhada da incerteza teórica dos cálculos envolvendo as correções no valor de gµ−2. O presente
trabalho dedica-se a estudar e reproduzir os resultados clássicos para gµ−2 da Equação de Dirac e
da primeira correção obtida na eletrodinâmica quântica, calculada por Julian Schwinger em 1948.

Palavras-chave: Teoria quântica de campos. Eletrodinâmica quântica. gµ − 2.
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1 Introdução
O momento magnético do múon desempenha, historicamente, um papel importantíssimo no

estabelecimento da Eletrodinâmica Quântica (QED) — e do Modelo Padrão (SM) como um
todo — como uma teoria sólida e capaz de fazer previsões refinadas na física de partículas. A
descrição clássica para o momento magnético, µ, de uma partícula elementar de carga e e spin
S, é dada por (em unidades naturais, h̄ = 1 e c = 1)

µ = g
e

2m
S, (1)

onde g é o fator giromagnético da partícula e m a sua massa. Paul Dirac previu,1 em 1928,
com o desenvolvimento da Mecânica Quântica Relativística (MQR), g = 2 para o elétron (e
consequentemente para todas as partículas elementares de spin 1/2), que certificava os resultados
experimentais da época e representava um grande salto comparado ao formalismo anterior da
Mecânica Quântica Não Relativística.

Com o advento da Teoria Quântica de Campos (TQC), o fator g passa a apresentar correções
finas, provenientes das trocas de partículas virtuais previstas no escopo da QED. Para os léptons
carregados (ℓ = e, µ e τ), defini-se o momento magnético anômalo, que nada mais é do que o
desvio relativo de g em relação a sua previsão da MQR,

aℓ =
gℓ − 2

2
. (2)

A primeira correção a gℓ − 2 (então calculada para o elétron), advinda da QED, foi calculada
por Julian Schwinger em 1948.2 No mesmo ano, P. Kusch e H. M. Foley confirmaram experimen-
talmente o resultado de Schwinger,3 mostrando a incrível capacidade da QED em calcular com
grande precisão importantes observáveis da física. Desde então, gℓ − 2 mostra-se uma ferramenta
poderosa na busca por novas interações e física além do SM.

Recentemente, a colaboração Muon g − 2 efetuou uma série de medidas para aµ, o momento
magnético anômalo do múon, no Fermilab (FNAL), laboratório de física de altas energias no
USA, indicando um desvio

∆aµ ≡ a(Exp)
µ − a(SM)

µ = (251± 59)× 10−11, (3)

que representa uma tensão 4.2σ em relação à previsão do SM,4 como indica a Figura 1. Entender
a origem desta discrepância é um importante problema da física atual, que requer a revisão e
análise detalhada da incerteza teórica dos cálculos envolvendo as correções no valor de gµ − 2.
No mais, em não havendo problemas nos cálculos do SM, o resultado passaria a apresentar forte
indício de uma nova física, possivelmente ligada a efeitos de partículas mais massivas nunca
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Figura 1 – Tensão entre o resultado experimental do Muon g − 2 e a previsão do SM para g − 2.
Fonte: ABI et al.4

observadas, tais como alguns candidatos à matéria escura, por exemplo.
Motivados por esse intrigante resultado experimental e sua importância para a física de

partículas atualmente, o presente trabalho dedica-se a revisitar e reproduzir os resultados
clássicos de gµ = 2 proveniente da Equação de Dirac e da primeira correção advinda da QED
para gµ − 2.
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2 gµ = 2 via Mecânica Quântica Relativística
Dentro do escopo da Mecânica Quântica Relativística, o tratamento de partículas fermiônicas

de spin 1/2 é feito através da Equação de Dirac, que na forma livre (V (x) = 0) é dada por

(iγµ∂µ −m)ψ(x) = 0, (4)

em que ψ é o espinor de quatro componentes e γµ são as matrizes de Dirac (4 × 4), cujas
expressões são dadas, na chamada base quiral, em blocos 2× 2, por

γ0 =

(
I 0

0 −I

)
, γi =

(
0 σi

−σi 0

)
, (5)

em que I é a matriz identidade e σi são as matrizes de Pauli usuais.
O interesse nesta seção é estudar a interação de uma partícula carregada de carga e com o

campo eletromagnético clássico (não quantizado). A introdução dessa interação na Equação de
Dirac é feita da seguinte maneira: adotando a assinatura da métrica gµν = diag(1,−1,−1,−1) e
o sistema natural de unidades (h̄ = 1 e c = 1) 1, o quadripotencial eletromagnético é dado por

Aµ = (ϕ,A), (6)

de forma que efetuando a substituição de acoplamento mínimo, ∂µ → (∂µ + ieAµ),5 insere-se na
Eq. (4) a dependência com o campo eletromagnético. Encontramos então

[γµ(i∂µ − eAµ)−m]ψ = 0, (7)

que é a equação que descreve a interação desejada, relativisticamente.
Para resolver a Eq. (7) , é conveniente adotar o ansatz

ψ =

(
Ψ+

Ψ−

)
e−iEt, (8)

no qual Ψ± representam os espinores de Pauli, de duas componentes, uma forma conveniente
para fazer contato com a versão não relativística da MQ, e E a energia de repouso da partícula
em questão. Com isso, aplicando (8) na eq. de Dirac, encontra-se o cojunto de duas equações
acopladas da forma

(E −m− eϕ)Ψ+ + σ · (i∇+ eA)Ψ− = 0, (9)

(E +m− eϕ)Ψ− + σ · (i∇+ eA)Ψ+ = 0, (10)
1Utilizaremos essa convenção de métrica e sistema de unidades durante todo o trabalho.
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e desejamos resolvê-las para os espinores Ψ+ e Ψ−.
Antes de partir para a solução, é possível analisar os termos encontrados sob uma ótica

não-relativística. No limite de baixas velocidades, a energia de repouso da partícula é muito
maior que sua energia cinética (p2/2m≪ m) e a contribuição coulombiana advinda do potencial
escalar, eϕ, também é desprezível quando comparada com a componente de repouso. Isso traz
implicações interessantes, de forma que simplifica-se o termo entre parênteses Eq. (10) como

E +m− eϕ ≈ 2m, (11)

que leva a facilmente resolver o conjunto acoplado de equações isolando

Ψ− = − 1

2m
σ · (i∇+ eA)Ψ+, (12)

o que possibilita substituir Ψ− na Eq. (9), encontrando

(E −m)Ψ+ −
(

1

2m
[σ · (i∇+ eA)]2 + eϕ

)
Ψ+ = 0. (13)

Ainda é possível trabalhar um pouco a Eq. (13) utilizando algumas propriedades das operações
com as matrizes de Pauli. Dado um operador π̂, a identidade5

(σ · π̂)2 = π̂2 + i σ · (π̂ × π̂) (14)

permite reescrever o primeiro termo dos parênteses na Eq. (13), e sendo o campo magnético
B = ∇×A e o operador momento da mecânica quântica p̂ = −i∇, a Eq. (13) pode ser reescrita
convenientemente como(

1

2m
(p̂− eA)2 + eϕ− e

2m
(σ ·B)

)
Ψ+ = (E −m)Ψ+, (15)

que pode ser resolvida para Ψ+ e encontram-se as soluções para a equação de Dirac na
aproximação correspondente. Entretanto, é possível extrair interpretações interessantes no limite
que estamos estudando: a expressão encontrada na Eq. (15) nada mais é do que a Hamiltoniana
de Pauli independente do tempo, já conhecida da mecânica quântica não relativística, em que
as duas componentes de Ψ+ são as soluções para os dois graus de liberdade de spin da partícula
fermiônica.5

Analisando com maiores detalhes, a equação de Pauli descreve um hamiltoniano clássico do
campo eletromagnético atuando em uma partícula de carga e, mais um termo que representa um
hamiltoniano de interação do campo magnético B com uma quantidade vetorial proporcional a
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σ. Ora, sabendo que no formalismo dos férmions escreve-se o spin das partículas como

S =
1

2
σ, (16)

então a hamiltoniana da interação com o campo magnético pode ser descrita através de

Hint = − e

m
(S ·B) = −(µ ·B), µ =

e

m
S, (17)

em que µ é o momento de dipolo magnético da partícula estudada.
Por simples comparação entre o resultado esperado clássico na Eq. (1) e o calculado através

do formalismo da MQR na Eq. (17), no limite de baixas velocidades, encontra-se o fator g para
o múon (o mesmo para os demais léptons carregados) como

gµ = 2 , (18)

que é o famoso resultado obtido por Paul Dirac,1 e que historicamente demonstrou o poder da
MQR perante aos formalismos anteriores, visto que além de explicar o surgimento do spin e
também a existência de anti-partículas na física, demonstrou o valor esperado para g, o qual
já se sabia, de maneira semi-empírica, ser aproximadamente igual a dois na época que Dirac
publicou seu trabalho.
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3 A Eletrodinâmica Quântica (QED)
Como comentado, as correções finas no valor de gµ advêm das interações calculadas dentro

do escopo da Teoria Quântica de Campos. Esta por sua vez, diferentemente dos formalismos na
Mecânica Quântica, tem a dinâmica construída através de lagrangianas descritas em termos
de campos quantizados (e suas derivadas), e não através de potenciais de interação obtidos
externamente à teoria. Neste trabalho, em particular, estamos interessados nas correções advindas
da Eletrodinâmica Quântica, formalismo da TQC que trata das interações entre fótons, excitações
quânticas do campo eletromagnético, e as partículas fermiônicas de spin 1/2. Para isso, precisamos
construir a lagrangiana que rege esse formalismo, para que então sejamos capazes de calcular os
processos que envolvem gµ − 2 dentro desse escopo.

A lagrangiana que descreve o campo livre das partículas de spin 1/2 é

L0 = iψ̄(x)γµ∂µψ(x)−mψ̄(x)ψ(x), (19)

onde ψ e ψ̄ ≡ ψ†γ0 representam campo e o campo adjunto de Dirac, respectivamente, que serão
quantizados. No contexto da TQC, ψ não é mais uma função de onda, e sim um operador capaz
de criar e destruir estados de partículas. Através da Equação de Euler-Lagrange

∂L

∂ψ
− ∂µ

(
∂L

∂(∂µψ)

)
= 0, (20)

encontramos a equação de movimento para os férmions

(i/∂ −m)ψ = 0, (21)

em que usamos a notação de Feynman, /∂ = γµ∂µ, e que é justamente a Equação de Dirac
da MQR. Nota-se, portanto, que a lagrangiana da Eq. (19) recupera a expressão dinâmica
para as partículas fermiônicas de spin 1/2. Porém, precisamos inserir na lagrangiana um termo
que envolva a interação dos férmions com o campo eletromagnético, agora necessariamente
quantizado no escopo dessa teoria. Para isso, o mecanismo consagrado na literatura para a
construção da interação na QED é a invariância de gauge (ou calibre) local, que passamos a
discutir a seguir.

A lagrangiana da Eq. (19) possui invariância por transformação de fase U(1) global, isto é, a
substituição

ψ(x) → ψ′(x) ≡ eieθψ(x) (22)

não altera a Equação de Dirac, com θ uma fase real e constante. Porém, isso deixa de ser
verdade quando θ torna-se uma função das coordenadas do espaço-tempo, isto quer dizer que
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a lagrangiana da Eq. (19) não é invariante por transformação U(1) local, já que a derivada
modifica-se para

∂µψ(x) → (∂µψ)
′(x) ≡ [∂µ + ie∂µθ(x)] e

ieθ(x)ψ(x). (23)

A ideia para se construir o termo de interação na lagrangiana é promover a invariância global
para local, efetuando as mudanças necessárias na derivada da Eq. (19) para que isso se torne
verdade. O termo extra que surge na derivada da Eq. (23) pode ser corrigido adicionando um
campo de gauge de spin 1, Aµ(x), que se transforma como6

Aµ(x) → (Aµ)
′(x) ≡ Aµ(x)− ∂µθ(x), (24)

e definindo uma derivada covariante, com respeito a tranformação de U(1) local,

Dµψ(x) ≡ (∂µ + ieAµ)ψ(x), (25)

a qual se transforma apenas com uma fase, assim como ψ na Eq. (22) . Com isso, podemos
reescrever a lagrangiana da Eq.(19) como

L = iψ̄(x)γµDµψ(x)−mψ̄(x)ψ(x) = L0 − eψ̄(x)γµAµ(x)ψ(x), (26)

que agora possui simetria U(1) local e inclui um termo de interação

Lint ≡ −eψ̄(x)γµAµ(x)ψ(x), (27)

que sugere a interpretação do campo de gauge quantizado Aµ como o campo do fóton: uma
partícula de spin 1 e sem massa que interage com os férmions. Para que isso seja possível, Aµ

deve ser um campo dinâmico, o que exige adicionar à lagrangiana um termo cinético para esse
campo6

Lcin = −1

4
Fµν(x)F

µν(x), (28)

em que Fµν ≡ ∂µAν − ∂νAµ é o tensor eletromagnético.
Assim, encontramos a lagrangiana da QED, invariante por trans. de gauge locais, como

LQED = −1

4
Fµν(x)F

µν(x) + iψ̄(x)γµ∂µψ(x)−mψ̄(x)ψ(x)− eψ̄(x)γµAµ(x)ψ(x) , (29)

que rege as interações de férmions e fótons na TQC e permite determinar as contribuições finas
em gµ − 2 proveniente da Eletrodinâmica Quântica. Porém, fazer esses cálculos diretamente da
lagrangiana não é tão simples: dentro da Representação de Interação (também conhecida como
Representação de Dirac), defini-se o operador de evolução temporal dos estados quânticos como
uma função da lagrangiana de interação da teoria, o que permite escrever um estado no tempo
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através de uma solução iterativa, conhecida como Série de Dyson. Com os campos escritos
em termos dos operadores de criação e destruição, e definidos os estados inicial e final de um
processo na QED, calcula-se a amplitude do evento através de um trabalho árduo envolvendo
contrações dos operadores na Série de Dyson com os estados das partículas, o que estende
consideravelmente os cálculos das amplitudes na QED.7

Felizmente, há um mecanismo brilhante, desenvolvido pelo também brilhante físico Richard
Feynman, que consiste em calcular os processos da QED via Diagramas e Regras de Feynman:
desenhos esquemáticos que representam as interações, e que podem ser associados a um conjunto
de regras que ligam os elementos dos diagramas a termos da equação que descreve a amplitude
do processo. Começamos associando, para cada linha interna e externa do desenho, um qua-
drimomento com sentido definido para o fluxo das partículas, de forma que em cada vértice
do diagrama, possamos impor a conservação de momento. Feito isso, as regras de Feynman na
QED são obtidas diretamente da lagrangiana da Eq. (29), e podem ser resumidas como7

1. Para as linhas externas, incluir

férmion

inicial : u(p)

final : ū(p′)
, antiférmion

inicial : v̄(p)

final : v(p′)
, fótons

inicial : ϵµ(p)

final : ϵ∗µ(p
′)
,

em que u e v representam os espinores de Dirac para partículas e antipartículas, respec-
tivamente, e ϵµ a polarização do fóton, que é a contração do campo Aµ com os estados
externos, com seus momentos p e p′ entrando e saindo do diagrama, respectivamente;

2. Para cada vértice, adicionar (−ieγµ), conhecido como Vértice Fundamental da QED.

3. Para linhas internas de quadrimomento p, que representam os propagadores da teoria,
incluir

férmion : i
(/p+m)

p2 −m2 + iϵ
, fóton : −i gµν

p2 + iϵ
; (30)

onde ϵ→ 0 é a Prescrição de Feynman para tratar as singularidades no denominador;

4. Integrar sobre cada momento de loop interno do diagrama;

5. O resultado será iM , onde M é a amplitude do processo descrito pelo diagrama.

Vale ressaltar que é importante seguir a ordem acima para evitar resultados errados para
a amplitude do processo. Uma forma segura de se ler um diagrama de Feynman é seguir as
linhas que representam os férmions e percorrê-la no sentido contrário ao fluxo da partícula,
representado pela direção da seta.7 Definidas as regras de Feynman, estamos aptos a calcular os
processos da QED que contribuem em gµ−2. Porém, antes, precisamos verificar quais diagramas
contribuem ao momento anômalo do múon, e como extrair as correçãos de suas respectivas
amplitudes.
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4 Correção de ordem α para gµ − 2 na QED

4.1 Correções Radiativas na QED: Fótons Virtuais

Figura 2 – Interações do µ, indicado pelas linhas cheias de momento p e p′, com o campo eletromagnético,
indicado pelas linhas onduladas (fótons). O círculo branco representa todas as possíveis interações.
Fonte: Elaborada pelo autor.

Vamos considerar os diagramas da Figura 2, que representam a interação do múon com
um campo eletromagnético externo, em ordem mais baixa (a) e dois exemplos de interações
geradas por diagramas de loops. Os diagramas em (b) e (c) são exemplos das chamadas correções
radiativas na QED, e são provenientes da troca de fótons virtuais pela partícula carregada.
Em outras palavras, o fenômeno pode ser interpretado como a auto-interação do múon com o
próprio campo gerado por sua carga, que emite e reabsorve os fótons, o que pode contribuir
significativamente para uma variedade de observáveis, em específico o momento magnético
anômalo, como demonstraremos a seguir.

Uma forma interessante de estudar o processo descrito na Figura 2 é considerando, inici-
almente, a interação dos férmions com os fótons externos fora da camada de massa, isto é,
tomando o quadrimomento do fóton incidente não necessariamente como q2 = 0. A grande
vantagem disso é tratar o problema da forma mais geral possível, o que não nos impede de
utilizar as regras de Feynman associadas à QED normalmente. Com todo o processo da Figura
2 descrito de forma generalizada, voltaremos a tomar as condições da camada de massa para as
interações que desejamos observar.

Dito isso, a amplitude dos processos descritos na Figura 2 é dada por M µϵµ, onde ϵµ é o
vetor de polarização associado ao fóton externo do vértice, e M µ é um termo que pode ser
escrito convenientemente como8

iM µ = −ieū(p′)Γµ(p′, p)u(p), (31)

em que ū(p′) e u(p) são os espinores associados aos múons espalhados, e Γµ(p, p′) é uma
estrutura geral que parametriza toda a informação das auto-interações ligadas à Figura 2.
Podemos restringir o formato de Γµ(p, p′) utilizando argumentos de simetria da QED e a
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invariância de Lorentz.
Para começar, Γµ deve ser uma combinação linear dos quadrivetores disponíveis, que são γµ,

pµ, p′µ e qµ, além de constantes fundamentais como m e e, podendo ser escrito em sua forma
geral como

Γµ = γµ A+ pµ B + p′µ C + qµ D, (32)

com A, B, C e D funções escalares de Lorentz que podem envolver produtos das matrizes de
Dirac e vetores, como /p = γµpµ. Entretanto, pela equação de Dirac

/pu(p) = mu(p),

ū(p′)/p′ = mū(p′),
(33)

e podemos escrever as variáveis /p e /p′ apenas em termos da massa m. Além disso, com a
conservação do momento, qµ = p′µ− pµ, podemos tomar D = 0, fazendo com que o único escalar
possível e não trivial (além das constantes m e e) que pode compor os coeficientes da Eq. (32)
seja q2 = (p′ − p)2 = −2p′ · p+ 2m2.

Outra simplificação que podemos fazer é através da Identidade de Ward7

qµM
µ = 0, (34)

a qual afirma que o termo da amplitude M µ é zero quando contraído com o quadrimomento do
fóton externo qµ. Logo, multiplicando toda a Eq. (32) por qµ

qµΓ
µ = qµγ

µA+ qµp
µB + qµp

′µC = 0, (35)

e, utilizando a Equação de Dirac, tem-se qµγµ = 0, portanto, os termos que acompanham B e C
são os unícos não diretamente nulos. Usando

q · p = p′ · p−m2 = −q · p′, (36)

tem-se B = C, reduzindo o formato de Γµ a apenas duas funções escalares de Lorentz.
Usando a Identidade de Gordon, podemos substituir (p+ p′) na expressão de Γµ em favor de7

ū(p′)

[
p′µ + pµ

2m

]
u(p) = ū(p′)

[
γµ +

iσµνqν
2m

]
u(p), σµν =

i

2
[γµ, γν ], (37)

tornando todo o termo Γµ função apenas de γµ e qµ. Portanto, a Eq. (32) pode ser escrita, de
maneira totalmente geral, como

Γµ(p′, p) = γµF1(q
2) +

iσµνqν
2m

F2(q
2), (38)
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onde F1(q
2) e F2(q

2) são chamados de Fatores de Forma, expressões escalares que acompanham
as estruturas de Lorentz γµ e iσµνqν , respectivamente, e carregam, portanto, todas as informações
do termo da amplitude descrito pela Eq. (31).

Vamos verificar agora como os Fatores de Forma se conectam com o momento magnético
anômalo do múon. Como observado na Hamiltoniana de Pauli, Eq. (15), a aproximação não
relativística para a solução da Equação de Dirac leva, naturalmente, ao surgimento do fator g em
um termo acoplado ao spin da partícula, S = σ/2. No contexto da Teoria Quântica de Campos,
os resultados para a amplitude do processo que estamos calculando estão dentro do escopo
relativístico, portanto, para extrairmos as correções em g, procuramos termos necessariamente
acoplados a σµνqν , o que nos permite identificar onde há a dependência com o spin da partícula.

Em ordem mais baixa, o fenômeno descrito é apenas um espalhamento de Rutherford usual,
dado pela interação do múon com o campo externo. Sendo nesse caso Γµ = γµ, então os fatores
de forma em ordem mais baixa assumem os valores F1 = 1 e F2 = 0, obrigatoriamente. Assim,
usando a Identidade de Gordon mais uma vez, escrevemos M µ em ordem 0 como

M µ
0 = −e

(
pµ + p′µ

2m

)
ū(p′)u(p)− i

e

2m
ū(p′)σµνqνu(p), (39)

que deve reproduzir gµ = 2 proveniente da Eq. de Dirac. Ora, pelo argumento anterior que nos
permite identificar gµ acoplado ao termo de spin, o fator giromagnético pode ser interpretado
como 4m/e vezes o coeficiente que acompanha iσµνqν , indicando que F1(q

2) é o fator responsável
por recuperar o resultado esperado da MQR.8

Entretanto, note que o F1(q
2) é capaz de modificar o vértice fundamental da teoria, o qual

provém do acoplamento do fóton na QED, eAµψ̄γ
µψ, que é fixo nesse contexto e não deve ser

alterado pelos fatores de forma, em nunhuma ordem de interação. De fato, F1(q
2) desempenha o

papel de um fator escalar que multiplica e no acoplamento, sendo relevante apenas no processo
de renormalização da carga.8 Com isso, o fator de forma F1(q

2) é fixado à unidade em todas as
ordens de interação da Figura 2, e não deve contribuir às correções de gµ − 2.7

Através dessa observação, e pela estrutura geral de Lorentz na Eq. (38), o fator de forma
F2(q

2) é o verdadeiro responsável pelas correções de gµ em ordens superiores ao espalhamento de
Rutherford. Tratando-se de um observável em que os fótons externos interagem com os férmions
na camada de massa (q2 = 0), o fator giromagnético para o múon passa a ser expresso como

gµ = 2[F1(0) + F2(0)] = 2 + 2F2(0) , (40)

reduzindo nossa análise a calcular apenas F2(0), que é diferente de zero para os diagramas de
loop na Figura 2.

Assim, nosso trabalho agora é dedicado a encontrar a primeira correção a gµ − 2, em ordem
α (a constante de estrutura fina), através da amplitude dos diagramas na Figura 2, que pode
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Figura 3 – Diagrama de Feynman de vértice do múon. A seta semi-circular indica o fluxo de momento
k dentro do loop.
Fonte: Elaborada pelo autor.

ser expressa por
Γµ = γµ + δΓµ, (41)

onde γµ é o espalhamento de Rutherford (ordem α0) do diagrama (a), e δΓµ é a contribuição
proveniente da análise do vértice em (b) da Figura 2, o qual iremos calcular a seguir.

4.2 Cálculo da Correção de um Loop do Vértice do Múon

Aplicando as Regras de Feynman no diagrama da Figura 3, o fator δΓµ é dado por

δΓµ(p′, p) = −ie2
∫

d4k

(2π)4
gνρ

(k − p)2 + iϵ
ū(p′)γν

(/k′ +m)

k′2 −m2 + iϵ
γµ

(/k +m)

k′2 −m2 + iϵ
γρu(p). (42)

As integrais desse tipo são conhecidas como integrais de loop, e aparecem quando há nos
diagramas uma estrutura em formato de laço (quando há 3 ou mais vértices de interação),
percorridas por um momento interno, k, da troca de partículas virtuais. Para resolver essa integral,
primeiramente, podemos simplificar a expressão para o denominador através da Parametrização
de Feynman. Esse método consiste em reescrever os três fatores da Eq. (42) como

1

((k − p)2 + iϵ)(k′2 −m2 + iϵ)(k2 −m2 + iϵ)
=

∫ 1

0

dx dy dz δ(x+ y + z − 1)
2

D3
, (43)

em que x, y, z são os Parâmetros de Feynman, os quais simplificam a expressão tornando o
denominador

D = k2 + 2k · (yq − zp) + yq2 + zp2 − (x+ y)m2 + iϵ, (44)

em que usamos x+ y + z = 1 e k′ = k + q para reescrevê-lo.

18



Agora, fazemos a mudança de variável k → l, completanto o quadrado em D para

l ≡ k + yq − zp ⇒ D = l2 −∆+ iϵ, (45)

no qual
∆ ≡ −xyq2 + (1− z)2m2 (46)

é uma função em termos da massa do múon, m. Note que a parametrização da integral em
termos de x, y e z, permitiu reescrever o denominador eliminando termos lineares na nova
variável de integração, o que facilita o prosseguimento do cálculo.

O numerador na Eq. (42), em termos agora de l,

N = ū(p′)[γν(/l + (1− y)/q + z/p)γ
µ(/l − y/q + z/p)γν ]u(p) (47)

apresenta termos lineares e quadráticos na nova variável. Pela contagem do número de potências
do denominador, no máximo l3, há uma divergência no ultravioleta (momentos altos em l) na
integral que estamos trabalhando.7

Há diversas formas de interpretar as divergências presentes em algumas integrais de loop.
Uma delas consiste em associar o problema às dimensões do espaço de integração: se efetuássemos
os cálculos em um espaço de dimensão d < 4, a integral seria finita e apresentaria a convergência
desejada.9 Estamos interessados nos resultados para um observável da física, gµ − 2, portanto,
divergências não devem aparecer em nossos resultados.

Utilizar um mecanismo que permita tratar esse problema se torna crucial, e desde já
adotaremos uma prescrição para isolar a divergência na integral da Eq. (42), conhecida como
Regularização Dimensional (Reg. Dim.). Essa prescrição, proposta inicialmente por G. ′t Hooft
e M. Veltman em 1972,9 consiste em calcular o diagrama da Figura (3) em um espaço d

dimensional, com 1 dimensão temporal e (d− 1) espaciais, de forma que

d = 4− 2ϵ, (48)

onde no limite que queremos, d → 4, tem-se ϵ → 0, nos permitindo isolar a divergência,
convenientemente, em termos que envolvem polos em ϵ.

Para usarmos Reg. Dim., é necessário tratar a álgebra de Dirac para as matrizes γµ em
um novo espaço de d dimensões, o que claramente modifica as identidades usuais e seus traços.
Através da contração

γµγµ = d · I, (49)
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as novas identidades para a álgebra de Dirac em d dimensões são

γν/aγν = −2/a+ (4− d)/a,

γν/a/bγν = 4(ab)− (4− d)/a/b,

γν/a/b/cγν = −2/c/b/a+ (4− d)/a/b/c,

(50)

que permitem calcular as contrações na Eq. (47). Porém, algumas identidades podem simplificar
ainda mais o numerador da nossa integral. Primeiramente, podemos utilizar7

∫
ddl

(2π)d
lµ

D3
= 0, (51)

que vem diretamente da paridade ímpar no numerador l → −l, enquanto os demais termos são
pares em relação a l, levando a zero integral e permitindo descartar os termos lineares em lµ.
Uma segunda expressão que auxilia a simplificação é∫

ddl

(2π)d
lµlν

D3
=

∫
ddl

(2π)d

1
d
gµνl2

D3
, (52)

que decorre dos mesmos argumentos de simetria: se µ ̸= ν, a integral é zero. Porém, no caso em
que µ = ν, podemos substituir o produto em termos da métrica gµν .7 Todas essas identidades
aplicadas na Eq. (47) levam a

N = ū(p′)[(2− d)/lγµ/l − 2m2γµ + 4m((1− 2y)qµ + 2zpµ)

− 2(−y/q + z/p)γ
µ((1− y)/q + z/p) + (4− d)K(l)]u(p),

(53)

no qual K(l) representa um conjunto de fatores proporcionais a (4 − d), que serão anulados
quando tomado o limite d→ 4, e, portanto, iremos desprezá-lo daqui em diante. Nesse passo da
simplificação, é interessante utilizar os resultados da equação de Dirac7

/pu(p) = mu(p), ū(p′)/p′ = mū(p′), ū(p′)/qu(p) = 0, (54)

que nos permitem substituir os momentos p e q em termos da massa m. Além disso, é importante
que possamos obter do numerador os fatores de forma F1(q

2) e F2(q
2) introduzidos na seção

anterior, e para isso aplicamos as identidades de Ward (34) e de Gordon (37), a fim de obter uma
expressão em função de γµ e iσµνqν . Através de todas as simplificações mencionadas, obtemos a
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Figura 4 – Contorno de integração em l0, que permite a Rotação de Wick.
Fonte: Elaborada pelo autor.

integral em (42) como sendo

δΓµ(p′, p) =µ(4−d)/22ie2
∫ 1

0

dx dy dz δ(x+ y + z − 1)

∫
ddl

(2π)d
2

D3
ū(p′)

[
γµ×(

− (d− 2)2

2d
l2 +

(6− d)

2
(1− x)(1− y)q2 +

(d− 2)

2
(1− z)2m2 − 2m2z

)
+
iσµνqν
2m

(2m2z(1− z))

]
u(p),

(55)

onde adicionamos à expressão um parâmetro escalar de energia µ(4−d)/2, que será necessário
para manter algumas expressões matemáticas adimensionais em nossos resultados, como será
enfatizado em breve.10

O próximo passo é efetuar a integração em ddl na métrica de Minkowski para o espaço-
tempo plano em d dimensões. Entretanto, é muito mais simples realizar essa integração em um
espaço com métrica euclideana, o que possibilita a utilização das coordenadas hiperesféricas d
dimensionais usuais. Felizmente, isso é possível através de um truque conhecido como Rotação
de Wick. Pela localização dos polos da equação (55), a integração pelo contorno apresentado na
Figura (4) é zero, via Teorema dos Resíduos∮

dl0f(l0) =

∫ +∞

−∞
f(l0)dl0 +

∫ −i∞

+i∞
f(l0)dl0 +

∫
C1

f(l0)dl0 +

∫
C2

f(l0)dl0 = 0, (56)

e as integrais nos quartos de círculos C1 e C2 também vão a zero quando tomado l0 → ∞.
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Portanto, de (56) retiramos que∫ +∞

−∞
f(l0)dl0 =

∫ +i∞

−i∞
f(l0)dl0, (57)

mostrando que as integrais no eixo real e complexo são equivalentes. Então, tomando o lado
direito da Eq. (57) e fazendo a mudança de variável

dl0 ≡ i dl0E , d⃗l ≡ dl⃗E, (58)

tornamos a métrica euclideana

ds2 = (dl0)2 − d⃗l 2 ⇒ −ds2 = (dl0E)
2 + dl⃗E

2, (59)

facilitando a escolha de um sistema de coordenadas e simplificando o processo de integração.8

A expressão (55), agora em lE, passa a ser

δΓµ(p′, p) = µ(4−d)/22e2
∫ 1

0

dx dy dz δ(x+ y + z − 1)

∫
ddlE
(2π)d

2

D3
E

ū(p′)

[
γµ×(

(d− 2)2

2d
l2E +

(6− d)

2
(1− x)(1− y)q2 +

(d− 2)

2
(1− z)2m2 − 2m2z

)
+
iσµνqν
2m

(2m2z(1− z))

]
u(p),

(60)

onde o denominador também sofre modificações para

DE = l2E +∆+ iϵ. (61)

Em seguida, precisamos efetuar a integração do momento lE. São duas integrais que temos
que resolver, sendo a primeira

I1 = µ(4−d)/2

∫
ddlE
(2π)d

l2E
(l2E +∆)3

=

∫
dΩd

(2π)d

∫ ∞

0

dlE
ld+1
E

(l2E +∆)3
, (62)

na qual a primeira integral ao lado direito é feita sobre o ângulo sólido em d dimensões. Esse
resultado pode ser obtido através do truque7

(
√
π)d =

∫
dxd exp

(
−

d∑
x2i

)
=

∫
dΩd

∫ ∞

0

dx xd−1e−x2

, (63)

que, usando a definição de função Gama, implica na área de uma esfera de raio unitário
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d-dimensional como sendo ∫
dΩd =

2πd/2

Γ(d/2)
. (64)

Já o segundo termo na Eq. (62) pode ser resolvido através da substituição

∫ ∞

0

dlE
ld+1
E

(l2E +∆)3
=

1

2

∫ ∞

0

d(l2E)
(l2E)

d
2

(l2E +∆)3
=

1

2

(
1

∆

)2− d
2
∫ 1

0

dx (1− x)d/2 x1−d/2, (65)

na qual x = ∆/(l2E +∆) e usando a definição da função Beta7

∫ 1

0

dx xα−1(1− x)β−1 = B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
, (66)

encontramos o resultado em d dimensões para a integral (62)

I1 = µ(4−d)/2

∫
ddlE
(2π)d

l2E
(l2E +∆)3

= µ(4−d)/2 1

(4π)d/2
d

2

Γ(2− d
2
)

Γ(3)

(
1

∆

)2− d
2

. (67)

Note que a expressão (67) possui um polo simples na função Γ(2− d/2) em d = 4. Nosso
resultado, portanto, apresenta uma divergência exatamente no limite que desejamos, como era
esperado pelos comentários feitos anteriormente que ligam a divergência à dimensão do espaço
de integração. A grande contribuição do método da Reg.Dim. consiste em permitir a substituição
d = 4− 2ϵ, de forma que reescrevemos a Eq. (67) como

I1 = µϵ

∫
ddlE
(2π)d

l2E
(l2E +∆)3

= µϵ (2− ϵ)

(4π)2−ϵ

Γ(ϵ)

Γ(3)

(
1

∆

)ϵ

, (68)

e no limite d→ 4 desejado, possibilita a expansão do resultado em torno de ϵ = 0. Usando a
aproximação, em primeira ordem para a função Γ(x)

Γ (ϵ) =
1

ϵ
− γ + O(ϵ), (69)

onde γ = 0.577215665 é a constante de Euler-Mascheroni, obtemos o resultado para Eq. (62)
como

I1 = µ(4−d)/2

∫
ddlE
(2π)d

l2E
(l2E +∆)3

−−→
d→4

1

(4π)2

(
1

ϵ
+ log

(
4πµ

∆
e−γ

)
+ O(ϵ)

)
, (70)

em que isolamos toda a divergência da integral em um termo 1/ϵ quando tomado ϵ→ 0. Note a
importância da escala de energia µ que adicionamos à integral anteriormente: ela é responsável
por manter o argumento do logarítmo adimensional, já que ∆ tem dimensão de energia (massa).

A segunda integral que precisamos determinar na Eq. (60) pode ser calculada usando os

23



mesmos procedimentos7

I2 =

∫
ddlE
(2π)d

1

(l2E +∆)3
−−→
d→4

1

32π2

1

∆
, (71)

que, felizmente, não tem divergências.
Com esses resultados para a integração em ddlE de I1 e I2, com d→ 4, obtemos a expressão

para correção de um loop do vértice do múon como

δΓµ(p′, p) =
α

2π

∫ 1

0

dx dy dzδ(x+ y + z − 1)× ū(p′)

[
iσµνqν
2m

(
1

∆
2m2z(1− z)

)
+ γµ

(
1

ϵ
+ log

(
4πµ

∆
e−γ

)
+

1

∆

(
(1− x)(1− y)q2 + (1− 4z + z2)m2

))]
u(p),

(72)

escrita agora em termos da constante de estrutura fina α = e2/4π ≈ 1/137.036 ≈ 0.007297.11

Da expressão na Eq. (72), podemos identificar os fatores de forma de acordo com a Eq. (38)
como

F1(q
2) =

α

2π

∫ 1

0

dx dy dzδ(x+ y + z − 1)

[
1

ϵ
+ log

(
4πµ

∆
e−γ

)
+

1

∆

(
(1− x)(1− y)q2 + (1− 4z + z2)m2

)]
,

(73)

F2(q
2) =

α

2π

∫ 1

0

dx dy dzδ(x+ y + z − 1)
2m2z(1− z)

(1− z)2m2 − xyq2
, (74)

e notamos que a divergência se encontra apenas no fator F1(q
2), o qual por construção deveria

ter valor fixado 1. Mas isso não é um problema: o procedimento de renormalização, que está
fora do escopo deste trabalho, elimina esta divergência.7 De qualquer modo, o resultado que nos
interessa depende apenas de F2(q

2), que é finito.
Podemos então calcular, agora tomando q2 = 0,

F2(q
2 = 0) =

α

2π

∫ 1

0

dx dy dzδ(x+ y + z − 1)
2z

(1− z)
=

α

2π
, (75)

concluindo que a primeira correção na QED, em ordem α, para o momento magnético anômalo
do múon é

aµ ≡ gµ − 2

2
=

α

2π
≈ 0.00116140973 , (76)

o famoso resultado de Julian Schwinger para correção de ordem α em gµ − 2, no contexto da
QED,2 que foi comprovado experimentalmente por Kusch e Foley em 1948, encontrando, na
ocasião para o elétron, ae = (0.00119± 0.00005),3 validando o resultado da Eq. (76), dentro da
incerteza do experimento. Esse resultado à época, demonstrou a capacidade da Teoria Quântica
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de Campos, e em particular a Eletrodinâmica Quântica, ainda em seus primeiros anos, em
efetuar cálculos com grande precisão para importantes observáveis da física. Além disso, mostra
que apesar de existirem divergências na teoria, ela é capaz de produzir resultados finitos para
tais observáveis e que estão de acordo com as observações experimentais.
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5 Conclusão
O objetivo desse trabalho foi obter o resultado clássico para gµ = 2, proveniente da equação

de Dirac, e a primeira correção em gµ − 2 dentro do escopo da TQC, mais especificamente na
QED, da troca de fótons virtuais.

Primeiramente, tomando o limite não relativístico (onde a energia de repouso é muito maior
que a energia cinética da partícula), resolvemos a equação de Dirac, com a substituição de
acoplamento mínimo. Com isso, vemos que a equação para os bi-espinores, associados ao ansatz
da Eq. (8), nada mais é do que a Hamiltoniana de Pauli, que descreve a interação de uma
partícula carregada com o campo eletromagnético na Mecânica Quântica Não Relativística.
Assim, compara-se, naturalmente, o resultado obtido com o esperado clássico, encontrando
gµ = 2 como uma previsão direta do tratamento do problema na MQR.

Em seguida, dentro do formalismo da QED, mostramos que os diagramas de loop produzem as
correções provenientes da Eletrodinâmica Quântica para gµ− 2, através do cálculo dos chamados
Fatores de Forma. Mostramos também que a correção para o momento magnético anômalo do
múon provém apenas do fator de forma F2(0), quando estudada a interação dos múons com o
fóton externo na camada de massa, q2 = 0. Através das Regras de Feynman da QED, calculamos
as amplitudes dos processos para os diagramas de vértices do múon. Utilizamos procedimentos
consagrados da TQC para resolver a integral de loop, como a Parametrização de Feynman e
a Rotação de Wick. Para tratar a divergência associada a integral do processo estudado, foi
adotado o método da Regularização Dimensional, que consiste em interpretar a divergência
associada às dimensões do espaço de integração. O procedimento isolou a divergência em um
polo simples em ϵ = 0, que felizmente não está presente no fator de forma F2(q

2). Calculamos
então aµ = F2(q

2 = 0) = α/2π, a correção de um loop na QED para o momento magnético
anômalo do múon.

No geral, o presente trabalho mostrou o poder da Mecânica Quântica Relativística e da Teoria
Quântica de Campos, em particular a QED, em obter resultados fantásticos para observáveis
importantes da física, que, inclusive atualmente, desempenham um papel crucial na validação
do Modelo Padrão da física de partículas e na busca por física além do SM.
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